Research Interests
- Explainable Deep Learning
- Pattern Recognition
- Image Processing & Analysis
- Continual Learning
- Space Weather Forecasting
Education
Work & Teaching Experience
Peer‑reviewed Journal Articles
- T. Adeyeha, C. Pandey, and B. Aydin, “Tamag: A python library for transformation and augmentation of solar magnetograms,” SoftwareX, vol. 29, p. 102032, Feb. 2025. doi:10.1016/j.softx.2024.102032
- K. Whitman, R. Egeland, I. G. Richardson, …, C. Pandey, et al., “Review of solar energetic particle models,” Advances in Space Research, Aug. 2023. doi:10.1016/j.asr.2022.08.006
- C. Pandey, A. Ji, R. A. Angryk, M. K. Georgoulis, and B. Aydin, “Towards coupling full‑disk and active region‑based flare prediction for operational space weather forecasting,” Frontiers in Astronomy and Space Sciences, vol. 9, Aug. 2022. doi:10.3389/fspas.2022.897301
Conference Proceedings
- T. Adeyeha, C. Pandey, and B. Aydin, “Large scale evaluation of deep learning‑based explainable solar flare forecasting models with attribution‑based proximity analysis,” in 2024 IEEE International Conference on Big Data (BigData), 2024, pp. 1209–1214. doi:10.1109/BigData62323.2024.10825177
- C. Pandey, T. Adeyeha, J. Hong, R. A. Angryk, and B. Aydin, “Advancing solar flare prediction using deep learning with active region patches,” in Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track, Springer Nature Switzerland, 2024, pp. 50–65. doi:10.1007/978-3-031-70381-2_4
- A. Ji, C. Pandey, and B. Aydin, “Towards hybrid embedded feature selection and classification approach with slim‑tsf,” in Big Data Analytics and Knowledge Discovery, Springer Nature Switzerland, 2024, pp. 91–105. doi:10.1007/978-3-031-68323-7_7
- C. Pandey, A. Ji, J. Hong, R. A. Angryk, and B. Aydin, “Embedding ordinality to binary loss function for improving solar flare forecasting,” in 2024 IEEE 11th International Conference on Data Science and Advanced Analytics (DSAA), 2024. doi:10.1109/DSAA61799.2024.10722839
- C. Pandey, R. A. Angryk, and B. Aydin, “Unveiling the potential of deep learning models for solar flare prediction in near‑limb regions,” in 2023 International Conference on Machine Learning and Applications (ICMLA), IEEE, Dec. 2023. doi:10.1109/icmla58977.2023.00103
- J. Hong, C. Pandey, A. Ji, and B. Aydin, “An innovative solar flare metadata collection for space weather analytics,” in 2023 International Conference on Machine Learning and Applications (ICMLA), Dec. 2023, pp. 408–413. doi:10.1109/ICMLA58977.2023.00063
- J. Hong, A. Ji, C. Pandey, and B. Aydin, “Enhancing solar flare prediction with innovative data‑driven labels,” in 2023 IEEE 5th International Conference on Cognitive Machine Intelligence (CogMI), IEEE, Nov. 2023. doi:10.1109/cogmi58952.2023.00035
- C. Pandey, R. A. Angryk, M. K. Georgoulis, and B. Aydin, “Explainable deep learning‑based solar flare prediction with post hoc attention for operational forecasting,” in Discovery Science, Springer Nature Switzerland, Oct. 2023, pp. 567–581. doi:10.1007/978-3-031-45275-8_38
- C. Pandey, A. Ji, T. Nandakumar, R. A. Angryk, and B. Aydin, “Exploring deep learning for full‑disk solar flare prediction with empirical insights from guided grad‑cam explanations,” in 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA), IEEE, Oct. 2023. doi:10.1109/dsaa60987.2023.10302639
- C. Pandey, R. A. Angryk, and B. Aydin, “Explaining full‑disk deep learning model for solar flare prediction using attribution methods,” in European Conference on Machine Learning and Knowledge Discovery in Databases: ADS Track (ECML PKDD), Springer Nature Switzerland, Sep. 2023, pp. 72–89. doi:10.1007/978-3-031-43430-3_5
- C. Pandey, A. Ji, R. A. Angryk, and B. Aydin, “Towards interpretable solar flare prediction with attention‑based deep neural networks,” in 2023 IEEE Sixth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), IEEE, Sep. 2023. doi:10.1109/aike59827.2023.00021
- J. Hong, A. Ji, C. Pandey, and B. Aydin, “Beyond traditional flare forecasting: A data‑driven labeling approach for high‑fidelity predictions,” in Big Data Analytics and Knowledge Discovery (DaWaK), Springer Nature Switzerland, Aug. 2023, pp. 380–385. doi:10.1007/978-3-031-39831-5_34
- C. Pandey, R. Angryk, and B. Aydin, “Deep neural networks based solar flare prediction using compressed full‑disk line‑of‑sight magnetograms,” in Information Management and Big Data, Springer International Publishing, 2022, pp. 380–396. doi:10.1007/978-3-031-04447-2_26
- C. Pandey, R. A. Angryk, and B. Aydin, “Solar flare forecasting with deep neural networks using compressed full‑disk HMI magnetograms,” in 2021 IEEE International Conference on Big Data (BigData), IEEE, Dec. 2021, pp. 1725–1730. doi:10.1109/bigdata52589.2021.9671322
Posters
- C. Pandey, R. A. Angryk, and B. Aydin, Towards reliable deep learning models for solar flare prediction, AGU, Authorea Inc., 2024. doi:10.22541/essoar.173457205.58483493/v1
- B. K. Jha, C. Pandey, O. Issan, et al., Geo‑cloak: Operational machine learning tool for global geomagnetic field perturbation forecasting, AGU, 2024. poster link
- J. Hong, C. Pandey, and B. Aydin, Enhancing solar flare prediction with integrated multi‑wavelength imagery and conformal prediction, AGU24, 2024. abstract
- C. Pandey, T. Adeyeha, T. Nandakumar, A. Rafal, and B. Aydin, Insights into deep learning‑based full‑disk solar flare prediction with post hoc explanation and evaluation, EarthCube 2023. doi:10.13140/RG.2.2.34673.97124
- C. Pandey, M. K. Georgoulis, B. Aydin, R. A. Angryk, and A. Ji, Exploring heuristics in full‑disk aggregation from individual active region prediction of solar flares, Jul. 2022, p. 3457. doi:10.13140/RG.2.2.34673.97124
- C. Pandey, A. Ji, R. Angryk, and B. Aydin, Training and Deployment of Predictive Models for Space Weather Forecasting: An Application on Full‑disk and Active Region‑based Flare Prediction, AGU Fall Meeting Abstracts, SH55A–1825, Dec. 2021. poster link
Technical Skills
- Programming Language: Python, C, C++, matlab
- Databases: Mysql, Postgresql
- Web Development: Html, css, JavaScript, Django
- Libraries & Framework: Numpy, Pandas, Matplotlib, Scikit‑Learn, Pytorch, Tensorflow, Keras
- Tools: Git, LaTeX, Docker, Notion, Miro
- Computing Environment: Google Cloud Platform (GCP), High Performance Computing Environment (HPCE)
Awards
- Jun 03–07, 2024 — NSF Travel Grant, 11th Community Coordinated Modeling Center (CCMC), NASA, Community Workshop 2024.
- Jun 27–28, 2023 — Early‑career Travel Award, EarthCube 2023.
- Jan–Dec, 2022 — Google Cloud Student Research Credit ($1,000).
- May 2021 – Aug 2022 — Second Century Initiative (2CI) University Doctoral Fellowship, Georgia State University.
- Jul 2016 – Jun 2017 — 4th Committee President, Association of Computer Engineering Students (ACES), Purwanchal Campus, Dharan, Nepal.
- Nov 2013 – Aug 2017 — Full Governmental Scholarship on Merit, B.E. in Computer Engineering, Tribhuvan University, Institute of Engineering, Dharan, Nepal.
Service to Profession
- 2025: Reviewer — 24th International Conference on Machine Learning and Applications (ICMLA); Solar Physics (Springer Nature); PeerJ Computer Science; Journal of Geophysical Research (JGR) – Machine Learning and Computation; Earth and Space Science (AGU); Journal of Circuits, Systems, and Computers (JCSC).
- 2024: Reviewer — Astronomy and Computing Journal; Program Committee Member — 27th International Conference on Discovery Science (DS); Reviewer — DS 2024; Reviewer — 23rd International Conference on Machine Learning and Applications (ICMLA); External Reviewer — 27th International Conference on Pattern Recognition (ICPR).
- 2023: Reviewer — 22nd International Conference on Machine Learning and Applications (ICMLA); Session Chair — Session 21B, 22nd ICMLA.